Equations in divergence form notes

Brian Krummel

March 15, 2016

1 Definitions and notation

Let Ω be a domain in \mathbb{R}^n . We say that $u \in W^{1,2}(\Omega)$ satisfies

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du = D_if^i + g \text{ weakly in } \Omega,$$
(1)

where the coefficients a^{ij} , b^i , c^j , and d are measurable functions on Ω and f^i , $g \in L^2(\Omega)$, if

$$\int_{\Omega} ((a^{ij}D_j u + b^i u)D_i \zeta - (c^j D_j u + du)\zeta) = \int_{\Omega} (f^i D_i \zeta - g\zeta)$$
 (2)

for all test functions $\zeta \in C_c^{\infty}(\Omega)$. We call u a weak solution to (1). Note that if (2) holds true for all $\zeta \in C_c^{\infty}(\Omega)$, then by a continuity argument using $C_c^{\infty}(\Omega)$ being dense in $W_0^{1,2}(\Omega)$, (2) holds true for all $\zeta \in W_0^{1,2}(\Omega)$

Observe that if the functions u, a^{ij} , b^i , c^j , d, f^i , and g were sufficiently smooth on Ω , for example $u \in C^2(\Omega)$, a^{ij} , b^i , $f \in C^1(\Omega)$, and c^j , d, $g \in C^0(\Omega)$, then by integration by parts,

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du = D_if^i + g \text{ pointwise in } \Omega$$
(3)

implies that (2) holds true and conversely (2) implies that

$$-\int_{\Omega} Lu\zeta = -\int_{\Omega} (D_i f^i + g)\zeta$$

for all $\zeta \in C_c^{\infty}(\Omega)$, which since ζ is arbitrary implies (3). However, (3) does not make sense under the weaker regularity conditions that $u \in W^{1,2}(\Omega)$, a^{ij} , b^i , c^j , and d are measurable functions on Ω , and f^i , $g \in L^2(\Omega)$, whereas (2) does make sense under the weaker regularity conditions.

We shall assume the ellipticity condition

$$a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$$
 for a.e. $x \in \Omega$ and for all $\xi \in \mathbb{R}^n$ (4)

for some constant $\lambda > 0$. Note that for equations in divergence form we cannot assume that $a^{ij}(x) = a^{ji}(x)$ for a.e. $x \in \Omega$. It will be standard to assume that the coefficients are bounded with

$$\sum_{i,j=1}^{n} |a^{ij}(x)|^2 \le \Lambda^2, \quad \lambda^{-2} \sum_{i=1}^{n} (|b^i(x)|^2 + |c^i(x)|^2) + \lambda^{-1} |d^i(x)| \le \nu^2 \text{ for a.e. } x \in \Omega$$
 (5)

for some constants $\Lambda, \nu \in (0, \infty)$.

We can similarly consider differential inequalities

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du \ge (\le)D_if^i + g$$
 weakly in Ω

for $u \in W^{1,2}(\Omega)$, which we take to mean that

$$\int_{\Omega} ((a^{ij}D_j u + b^i u)D_i \zeta - (c^j D_j u + du)\zeta) \le (\ge) \int_{\Omega} (f^i D_i \zeta - g\zeta) \tag{6}$$

for all non-negative $\zeta \in C_c^{\infty}(\Omega)$ (or equivalently for all $\zeta \in W_0^{1,2}(\Omega)$).

We also want to consider the Dirichlet problem

$$D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du = D_if^i + g$$
 weakly in Ω ,
 $u = \varphi$ on $\partial\Omega$,

where $u \in W^{1,2}(\Omega)$, the coefficients a^{ij} , b^i , c^j , and d are bounded measurable functions on Ω , $f^i, g \in L^2_{loc}(\Omega)$, and $\varphi \in W^{1,2}(\Omega)$. By $u = \varphi$ on $\partial \Omega$, we mean that

$$u - \varphi \in W_0^{1,2}(\Omega).$$

Note that if Ω , u, and φ are sufficiently smooth, namely Ω is a C^1 domain and $u, \varphi \in C^1(\overline{\Omega})$, then $u - \varphi \in W_0^{1,2}(\Omega)$ implies that $u = \varphi$ pointwise on $\partial \Omega$. To see this, recall that $u - \varphi \in W_0^{1,2}(\Omega)$ means that there exists a sequence of functions $v_j \in C_c^{\infty}(\Omega)$ such that $v_j \to u - \varphi$ in $W^{1,2}(\Omega)$. Thus

$$\int_{\partial\Omega} (u - \varphi)\zeta \cdot \nu = \int_{\Omega} (D(u - \varphi) \cdot \zeta + (u - \varphi) \operatorname{div} \zeta)$$

$$= \lim_{j \to \infty} \int_{\Omega} (Dv_j \cdot \zeta + v_j \operatorname{div} \zeta)$$

$$= \lim_{j \to \infty} \int_{\partial\Omega} v_j \zeta \cdot \nu$$

$$= 0.$$

for all $\zeta \in C_c^{\infty}(\mathbb{R}^n; \mathbb{R}^n)$, where ν denotes the outward unit normal to $\partial\Omega$. Since ζ is arbitrary, $u = \varphi$ pointwise on $\partial\Omega$.

2 Maximum principle

Let Ω be a bounded domain in \mathbb{R}^n . Let $u \in W^{1,2}(\Omega)$. By $\sup_{\Omega} u$ we mean the essential supremum, i.e.

$$\sup_{\Omega} u = \inf\{k \in \mathbb{R} : u \le k \text{ a.e. in } \Omega\}.$$

By $\sup_{\partial\Omega} u$, we mean

$$\sup_{\partial \Omega} u = \inf \{ k \in \mathbb{R} : (u - k)^+ \in W_0^{1,2}(\Omega) \},\$$

where $v^+(x) = \max\{v(x), 0\}$ for measurable functions v on Ω . Using the fact that $\lim_{\varepsilon \downarrow 0} \mathcal{L}^n(\{x \in \Omega : 0 < u(x) - \sup_{\partial \Omega} u < \varepsilon\}) = 0$ and $W_0^{1,2}(\Omega)$ is closed in $W^{1,2}(\Omega)$, given easy to see that $(u - k)^+$

converges to $(u - \sup_{\partial\Omega} u)^+$ in $W_0^{1,2}(\Omega)$ as $k \downarrow \sup_{\partial\Omega} u$, so in particular $(u - \sup_{\partial\Omega} u)^+ \in W_0^{1,2}(\Omega)$. We can similarly define

$$\inf_{\Omega} u = \sup\{k \in \mathbb{R} : u \ge k \text{ a.e. in } \Omega\},$$

$$\inf_{\partial \Omega} u = \sup\{k \in \mathbb{R} : (u - k)^- \in W_0^{1,2}(\Omega)\}.$$

where $v^-(x) = \min\{v(x), 0\}$ for measurable functions v on Ω . Given $u \in W^{1,2}(\Omega)$, obviously $u \leq v$ means that $u \leq v$ a.e. in Ω . We say $u \leq v$ on $\partial \Omega$ if $(u - v)^+ \in W^{1,2}_0(\Omega)$.

Theorem 1 (Weak maximum principle). Let Ω be a bounded domain in \mathbb{R}^n . Suppose $u \in W^{1,2}(\Omega)$ satisfies

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du \ge 0 \text{ in } \Omega$$

where a^{ij} , b^i , c^j , and d are measurable function on Ω satisfying (4) and (5) for some constants $0 < \lambda, \Lambda, \nu < \infty$ and

$$\int_{\Omega} (-b^i D_i \zeta + d\zeta) \le 0 \tag{7}$$

for all nonnegative $\zeta \in W_0^{1,1}(\Omega)$. Then

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u^+,$$

where $u^+(x) = \max\{u(x), 0\}$ for $x \in \Omega$.

Heuristically,

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du = a^{ij}D_{ij}u + (D_ia^i + b^i + c^i)D_iu + (D_ib^i + d)u \text{ in } \Omega.$$

Since if b^i and d are sufficiently smooth ($b^i \in W^{1,1}(\Omega)$ and $d \in L^1(\Omega)$ is sufficient), then by integration by parts $D_i b^i + d \leq 0$ a.e. in Ω is equivalent to (7). Thus we can interpret (7) as meaning that $D_i b^i + d \leq 0$ weakly in Ω . (7) is the analogue to $c \leq 0$ in the case of the classical elliptic operator $Lu = a^{ij} D_{ij} u + b^i D_i u + cu$.

Proof of the weak maximum principle. We will use a standard type of proof technique using the weak inequality

$$\int_{\Omega} ((a^{ij}D_j u + b^i u)D_i \zeta - (c^j D_j u + du)\zeta) \le 0.$$
(8)

for all nonnegative $\zeta \in W_0^{1,2}(\Omega)$.

Our first step it to use (7) to simplify the inequality. By rewriting (8) and using (7),

$$\int_{\Omega} (a^{ij} D_j u D_i \zeta - (b^j + c^j) D_j u \zeta) \le \int_{\Omega} (-b^i D_i (u \zeta) + d(u \zeta)) \le 0.$$
(9)

for all $\zeta \in W_0^{1,2}(\Omega)$ such that $\zeta \geq 0$ and $u\zeta \geq 0$ a.e. in Ω . Note that $u \in W^{1,2}(\Omega)$ and $\zeta \in W_0^{1,2}(\Omega)$ implies that $u\zeta \in W_0^{1,1}(\Omega)$.

The case where $b^j + c^j = 0$ a.e. in Ω is particularly easy. We now will chose a particular test function ζ in (9), namely $\zeta = (u - l)^+$ for $l = \sup_{\partial\Omega} u^+$. Note that this ζ is indeed in $W_0^{1,2}(\Omega)$. By (9) obtain

$$\int_{\Omega} a^{ij} D_j \zeta D_i \zeta \le 0.$$

By (4),

$$\lambda \int_{\Omega} |D\zeta|^2 \le 0,$$

so $D\zeta = 0$ a.e. in Ω . Thus ζ is constant on Ω . In particular, since $\zeta \in W_0^{1,2}(\Omega)$, $\zeta = 0$ a.e. in Ω . Therefore

$$\sup_{\Omega} u \le l = \sup_{\partial \Omega} u^+.$$

Now suppose $b^j + c^j$ is not identically zero on Ω . By way of contradiction suppose that

$$\sup_{\partial\Omega} u^+ < \sup_{\Omega} u.$$

Let $l \in \mathbb{R}$ such that

$$\sup_{\partial \Omega} u^+ < l < \sup_{\Omega} u.$$

Now we proceed with a standard type of argument. Like before, we choose our test function ζ , in particular we choose $\zeta = (u - l)^+$ in (9). We note that $\zeta \in W_0^{1,2}(\Omega)$. Then by (9)

$$\int_{\Omega} a^{ij} D_j \zeta D_i \zeta - (b^j + c^j) \zeta D_j \zeta) \le 0.$$

Next we rewrite this inequality as

$$\int_{\Omega} a^{ij} D_j \zeta D_i \zeta \le \int_{\Omega} (b^j + c^j) \zeta D_j \zeta$$

so that the integral of $a^{ij}D_j\zeta D_i\zeta$ is on the left hand side and everything else is on the right hand side. Then by (4) and (5),

$$\lambda \int_{\Omega} |D\zeta|^2 \le 2\lambda \nu \int_{\Omega} \zeta |D\zeta|.$$

Next we move all the $D\zeta$ terms to the left hand side using the Cauchy inequality $ab \leq \frac{1}{4}a^2 + b^2$ for $a, b \geq 0$ to get

$$\lambda \int_{\Omega} |D\zeta|^2 \le \frac{\lambda}{2} \int_{\Omega} |D\zeta|^2 + 2\lambda \nu^2 \int_{\Gamma} |\zeta|^2$$

where $\Gamma = \{x \in \Omega : D\zeta(x) \neq 0\}$, and then move the integral of $|D\zeta|^2$ to the left hand side to get

$$\int_{\Omega} |D\zeta|^2 \le 4\nu^2 \int_{\Gamma} |\zeta|^2. \tag{10}$$

Note that here we used the fact that $\zeta |D\zeta| = 0$ on $\Omega \setminus \Gamma$ to get an integral over Γ on the right hand side of (10). This will be important in a moment. The next step is to apply the Sobolev inequality on the left hand side to obtain

$$\frac{1}{C^2} \|\zeta\|_{L^{2n/(n-2)}}^2 \le 4\nu^2 \int_{\Gamma} |\zeta|^2$$

for some constant $C = C(n) \in (0, \infty)$ and then apply the Hölder inequality to the right hand side to obtain

$$\frac{1}{C^2} \|\zeta\|_{L^{2n/(n-2)}}^2 \le 4\nu^2 |\Gamma|^{2/n} \|\zeta\|_{L^{2n/(n-2)}}^2,$$

where |S| denotes the Lebesgue measure of a set S, which by cancelling $\|\zeta\|_{L^{2n/(n-2)}} > 0$ implies

$$(2C\nu)^{-n} \le |\Gamma|. \tag{11}$$

Now the application of the Sobolev inequality to the left hand side of (10) only makes sense if n > 2. If n = 2, let $1 < \hat{n} < 2$. and note that by the (10), Sobolev inequality, and the Hölder inequality

$$\frac{1}{C} \|\zeta\|_{L^{2\hat{n}/(2-\hat{n})}(\Gamma)} \leq \|D\zeta\|_{L^{\hat{n}}(\Gamma)}
\leq |\Gamma|^{1/\hat{n}-1/2} \|D\zeta\|_{L^{2}(\Gamma)}
\leq 2\nu |\Gamma|^{1/\hat{n}-1/2} \|\zeta\|_{L^{2}(\Gamma)} \text{ (by (10))}
\leq 2\nu |\Gamma|^{1/2} \|\zeta\|_{L^{2\hat{n}/(2-\hat{n})}(\Gamma)}$$

so cancelling $\|\zeta\|_{L^{2\hat{n}/(2-\hat{n})}(\Gamma)}$ yields (11) in the case n=2. Since Γ is where $\zeta=(u-l)^+$ satisfies $\zeta\geq 0$ and $D\zeta\neq 0$, we can rewrite (11) as

$$C \le |\{x : u(x) \ge l, Du(x) \ne 0\}|.$$
 (12)

Note that the set on the right hand side of (12) is decreasing (with respect to set inclusion \subseteq) as l increases. If $\sup_{\Omega} u = \infty$, let $l \uparrow \infty$ in (12)to obtain $u(x) = \infty$ on a subset of Ω with positive measure, which contradicts $u \in L^2(\Omega)$. If $\sup_{\Omega} u < \infty$, let l increase to $\sup_{\Omega} u$ in (12), we obtain $u = \sup_{\Omega} u$ and $Du \neq 0$ on a subset of Ω of positive measure, which is impossible by Lemma 1 below.

Lemma 1. Let $u \in W^{1,2}(\Omega)$. If u is constant on some measurable set S in Ω , then Du = 0 a.e. on S.

Proof. WLOG suppose u = 0 on S.

Recall that if $f: \mathbb{R} \to \mathbb{R}$ is a C^1 function with bounded derivative and $u \in W^{1,2}(\Omega)$, then $f(u) \in W^{1,2}(\Omega)$ with weak derivative f'(u)Du. We claim that for $u^+(x) = \max\{u(x), 0\}$, $u^+ \in W^{1,2}(\Omega)$ with $Du^+(x) = Du(x)$ at a.e. $x \in \Omega$ with u(x) > 0 and $Du^+(x) = 0$ for a.e. $x \in \Omega$ with $u(x) \le 0$. To see this, for $\varepsilon > 0$ let $f_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ a smooth, convex function with $f_{\varepsilon}(t) = 0$ for $t \le \varepsilon/2$ and $f'_{\varepsilon}(t) = 1$ for $t \ge \varepsilon$. Fix a test function $\zeta \in C_c^{\infty}(\Omega)$. Since $f_{\varepsilon}(t) = 0$ for $t \le 0$ and $t - \varepsilon < f_{\varepsilon}(t) \le t$ for $t \ge 0$,

$$\left| \int_{\Omega} u^{+} D\zeta - \int_{\Omega} f_{\varepsilon}(u) D\zeta \right| \leq \varepsilon \int_{\Omega} |\zeta| \to 0$$

as $\varepsilon \downarrow 0$. Hence

$$-\int_{\Omega} u^{+} D\zeta = \lim_{\varepsilon \downarrow 0} -\int_{\Omega} f_{\varepsilon}(u) D\zeta = \lim_{\varepsilon \downarrow 0} \int_{\Omega} f'_{\varepsilon}(u) Du\zeta = \int_{\Omega \cap \{u > 0\}} Du\zeta,$$

where the last step follows from the dominated convergence theorem and the fact that $f'_{\varepsilon}(u) = 0$ if $u \leq 0$ and $f'_{\varepsilon}(u) \uparrow 1$ if u > 0.

By the same argument, we can show that for $u^-(x) = \min\{u(x), 0\}, u^- \in W^{1,2}(\Omega)$ with $Du^-(x) = Du(x)$ at a.e. $x \in \Omega$ with u(x) < 0 and $Du^-(x) = 0$ for a.e. $x \in \Omega$ with $u(x) \ge 0$.

Since u=0 a.e. on S, $Du^+=Du^-=0$ a.e. on S. Since $u=u^++u^-$, $Du=Du^++Du^-=0$ a.e. on S.

Corollary 1 (Uniqueness for the Dirichlet Problem). Consider L as above (i.e., satisfying (4), (5), and (7)) Suppose $u, v \in W^{1,2}(\Omega)$ such that Lu = Lv in Ω and u = v on $\partial\Omega$ (i.e. $u - v \in W_0^{1,2}(\Omega)$). Then u = v a.e. in Ω .

3 Existence theory

Recall the following:

Theorem 2 (Lax Milgram). Let \mathcal{H} be a Hilbert space, $B: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ be a bilinear functional that is

Bounded: $|B(x,y)| \leq C_1 ||x||_{\mathcal{H}} ||y||_{\mathcal{H}}$ for all $x,y \in \mathcal{H}$ for some constant $C_1 \in (0,\infty)$ and

Coercive: $B(x,x) \geq C_2 ||x||_{\mathcal{H}}^2$ for all $x \in \mathcal{H}$ for some constant $C_2 \in (0,\infty)$.

Let $F: \mathcal{H} \to \mathbb{R}$ be a bounded linear functional on \mathcal{H} . Then there exists a unique element $z \in \mathcal{H}$ such that

$$B(z,x) = F(x) \text{ for all } x \in \mathcal{H}.$$
 (13)

Moreover, $||z||_{\mathcal{H}} \leq (1/C_2)||F||$. (References: Gilbarg and Trudinger, Theorem 5.8)

Proof. For every $x \in \mathcal{H}$, by Riesz representation applied to the bounded linear functional B(x,.), there is a unique element $Tx \in \mathcal{H}$ such that $B(x,y) = (Tx,y)_{\mathcal{H}}$ and $||B(x,.)||_{\mathcal{H}^*} = ||Tx||_{\mathcal{H}}$. Since B is bilinear, $T: \mathcal{H} \to \mathcal{H}$ is linear. Also by Riesz representation applied to F, there is a unique $w \in \mathcal{H}$ such that F(x) = (w,x) for all $x \in \mathcal{H}$. Thus (13) is equivalent to

$$(Tz, x) = (w, x) \text{ for all } x \in \mathcal{H},$$
 (14)

which is in turn equivalent to

$$Tz = w. (15)$$

((14) implies (15) by choosing x = Tz - w.) Thus in order to show that there is a solution z to (13) with $||z||_{\mathcal{H}} \leq (1/C_2)||F||$, it suffices to show that T has an inverse function $T^{-1}: \mathcal{H} \to \mathcal{H}$ which is a bounded linear map with norm $||T^{-1}|| \leq 1/C_2$.

Since B is coercive,

$$C_2||x||_{\mathcal{H}}^2 \le B(x,x) = (x,Tx) \le ||x||_{\mathcal{H}}||Tx||_{\mathcal{H}},$$

SO

$$C_2||x||_{\mathcal{H}} \le ||Tx||_{\mathcal{H}}.\tag{16}$$

Now we use (16) to show that $T: \mathcal{H} \to \mathcal{H}$ is bijective and $||T^{-1}|| \leq 1/2C_2$:

- (1) T is injective: If $Tx_1 = Tx_2$ for some $x_1, x_2 \in \mathcal{H}$ then $T(x_1 x_2) = 0$ in \mathcal{H} and by (16) $||x_1 x_2||_{\mathcal{H}} = 0$, so $x_1 = x_2$.
- (2) T has closed range: Suppose $x_j \in \mathcal{H}$ such that $Tx_j \to y$ in \mathcal{H} . Then by (16)

$$||x_j - x_k||_{\mathcal{H}} \le \frac{1}{C_2} ||Tx_j - Tx_k||_{\mathcal{H}} \to 0$$

as $j, k \to \infty$, so x_j is Cauchy. Thus x_j converges to some x in \mathcal{H} and y = Tx.

(3) The range $T(\mathcal{H})$ of T is \mathcal{H} : Suppose there is a $x \in T(\mathcal{H})^{\perp}$. By coercivity,

$$C_2||x||_{\mathcal{H}}^2 \le B(x,x) = (Tx,x)_{\mathcal{H}} = 0,$$

so x = 0. Therefore $T(\mathcal{H}) = \mathcal{H}$.

(4) $||T^{-1}|| \le 1/C_2$: Let $y = T^{-1}x$. Then by (16),

$$||T^{-1}x||_{\mathcal{H}} = ||y||_{\mathcal{H}} \le \frac{1}{C_2} ||Ty||_{\mathcal{H}} = \frac{1}{C_2} ||x||_{\mathcal{H}}.$$

Theorem 3. Let Ω be a domain in \mathbb{R}^n . Let $a^{ij}, b^i, c^j, d \in L^{\infty}(\Omega)$ be coefficients satisfying (4) and (5) for some constants $0 < \lambda, \Lambda, \nu < \infty$ and (7). For every $f^i, g \in L^2(\Omega)$ and $\varphi \in W^{1,2}(\Omega)$, there is a unique solution $u \in W^{1,2}(\Omega)$ to the Dirichlet problem

$$Lu = D_i f^i + g \text{ weakly in } \Omega,$$

$$u = \varphi \text{ on } \partial\Omega.$$
 (17)

Moreover,

$$||u||_{W^{1,2}(\Omega)} \le C(||f||_{L^2(\Omega)} + ||g||_{L^2(\Omega)} + ||\varphi||_{W^{1,2}(\Omega)}).$$

Proof. By the maximum principle, the solution to the Dirichlet problem is unique if it exists, so what remains to show is the existence of solutions. By replacing u with $v = u - \varphi$ and solving for v such that $Lv = D_i f^i + g - L\varphi$ weakly in Ω and v = 0 on $\partial\Omega$, it suffices to assume that $\varphi = 0$ a.e. on Ω .

Define the bounded bilinear functional $\mathcal{L}: W_0^{1,2}(\Omega) \times W_0^{1,2}(\Omega) \to \mathbb{R}$ by

$$\mathcal{L}(u,v) = \int_{\Omega} (a^{ij}D_j u D_i v + b^i u D_i v - c^j D_j u v - duv)$$

and define the bounded linear functional $F: W_0^{1,2}(\Omega) \to \mathbb{R}$ by

$$F(\zeta) = \int_{\Omega} (f^i D_i \zeta - g\zeta).$$

Clearly solving for $u \in W^{1,2}(\Omega)$ satisfying (17) with $\varphi = 0$ is equivalent to solving for $u \in W_0^{1,2}(\Omega)$ such that

$$\mathcal{L}(u,\zeta) = F(\zeta) \text{ for all } \zeta \in W_0^{1,2}(\Omega).$$
(18)

By Lax-Milgram, it suffices to show that \mathcal{L} is coercive. Unfortunately, we only have

$$\mathcal{L}(v,v) = \int_{\Omega} (a^{ij} D_i v D_j v + (b^i - c^i) v D_i v - dv^2)$$

$$\geq \lambda \int_{\Omega} |Dv|^2 - \lambda \int_{\Omega} (2\nu |v| |Dv| + \nu^2 |v|^2) \qquad \text{(by (4) and (5))}$$

$$\geq \frac{\lambda}{2} \int_{\Omega} |Dv|^2 - 3\lambda \nu^2 \int_{\Omega} v^2 \qquad \text{(by Cauchy's inequality)},$$

so \mathcal{L} is not necessarily coercive.

If we instead considered the problem of solving for $u \in W_0^{1,2}(\Omega)$ such that

$$L_{\sigma}u \equiv Lu - \sigma u = D_i f^i + g$$
 weakly in Ω

for given $f^i, g \in W_0^{1,2}(\Omega)$, then the corresponding bilinear form

$$\mathcal{L}_{\sigma}(u,v) = \int_{\Omega} (a^{ij}D_{j}uD_{i}v + b^{i}uD_{i}v - c^{j}D_{j}uv + (-d + \sigma)uv)$$

would satisfy

$$\mathcal{L}_{\sigma}(v,v) \ge \frac{\lambda}{2} \int_{\Omega} |Dv|^2 + (\sigma - 3\lambda \nu^2) \int_{\Omega} v^2,$$

so \mathcal{L}_{σ} is obviously coercive provided σ is sufficiently large. By Lax-Milgram, there exists an inverse map $L_{\sigma}^{-1}:W_{0}^{1,2}(\Omega)^{*}\to W_{0}^{1,2}(\Omega)$ such that for every bounded linear functional $F\in W_{0}^{1,2}(\Omega)^{*}$, u=TF is the solution to $L_{\sigma}u=F$ weakly in Ω , i.e. $\mathcal{L}_{\sigma}(u,\zeta)=F(\zeta)$ for all $\zeta\in W_{0}^{1,2}(\Omega)$. Observe that Lu=F weakly in Ω , where $F\in W_{0}^{1,2}(\Omega)^{*}$, is equivalent to

$$u + \sigma L_{\sigma}^{-1} u = L_{\sigma}^{-1} F \text{ in } \Omega. \tag{19}$$

We know

$$L_{\sigma}^{-1}: W_0^{1,2}(\Omega) \subset L^2(\Omega) \subset W_0^{1,2}(\Omega)^* \to W_0^{1,2}(\Omega),$$

which is compact since the embedding $W_0^{1,2}(\Omega) \subset L^2(\Omega)$ is compact by Rellich's lemma. Note that here the embedding $L^2(\Omega) \subset W_0^{1,2}(\Omega)^*$ is defined by mapping $v \in L^2(\Omega)$ to the linear functional $\zeta \mapsto \int_{\Omega} v\zeta$. Since L_{σ}^{-1} is a compact linear operator between Banach spaces, by spectral theory for L_{σ}^{-1} either $-1/\sigma$ is an eigenvalue of L_{σ}^{-1} or (19) has a unique solution $u \in W_0^{1,2}(\Omega)$ for all $F \in W_0^{1,2}(\Omega)^*$ and $||u||_{W^{1,2}(\Omega)} \leq C||F||$ for some $C = C(\lambda, \Lambda, \nu) \in (0, \infty)$. Since the solution to the Dirichlet problem for L is unique by the maximum principle, in particular Lu = 0 weakly in Ω only when $u=0, -1/\sigma$ is not an eigenvalue of L_{σ}^{-1} and thus there exists a unique solution $u\in W_0^{1,2}(\Omega)$ to Lu=F weakly in Ω for every $F\in W_0^{1,2}(\Omega)^*$.

The spectral theory for L_{σ}^{-1} , we obtain the Fredholm alternative for equations in divergence form:

Theorem 4 (Fredholm alternative). Let

$$Lu = D_i(a^{ij}D_iu + b^iu) + c^jD_iu + du \text{ in } \Omega$$

for $u \in W^{1,2}(\Omega)$, where $a^{ij}, b^i, c^j, d \in L^{\infty}(\Omega)$ satisfying (4) and (5). There exists a countable, discrete set $\Sigma \subset \mathbb{R}$ such that

- (a) if $\lambda \notin \Sigma$, the Dirichlet problem, $Lu + \lambda u = D_i f^i + g$ in Ω , $u = \varphi$ on $\partial \Omega$, has a unique solution $u \in W^{1,2}(\Omega)$ for all $f^i, q \in L^2(\Omega)$ and $\varphi \in W^{1,2}(\Omega)$, and
- (b) if $\lambda \in \Sigma$, the homogeneous problem, $Lu + \lambda u = 0$ in Ω , u = 0 on $\partial \Omega$, has a finite dimensional subspace of nontrivial solutions $u \in W_0^{1,2}(\Omega)$. We call λ a Dirichlet eigenvalue of L.

(Note that some books, for example Gilbarg and Trudinger, define Σ as the set of λ such that there is a nontrivial solution $u \in W_0^{1,2}(\Omega)$ to $Lu - \lambda u = 0$ in Ω .)

4 Regularity theory

Theorem 5 ($W^{2,2}$ Interior Regularity). Let Ω be an open set in \mathbb{R}^n . Suppose $u \in W^{1,2}(\Omega)$ satisfies

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du = f$$
 weakly in Ω

for an elliptic operator L with coefficients a^{ij} , $b^i \in C^{0,1}(\Omega)$ and c^j , $d \in L^{\infty}_{loc}(\Omega)$ and a function f with $f \in L^2_{loc}(\Omega)$. By elliptic, we just require that $a^{ij}(x)\xi_i\xi_j \geq \lambda |\xi|^2$ for some $\lambda \in (0,\infty)$. Then $u \in W^{2,2}_{loc}(\Omega)$ with

$$||u||_{W^{2,2}(\Omega')} \le C(||u||_{W^{1,2}(\Omega)} + ||f||_{L^2(\Omega)})$$

for every $\Omega' \subset\subset \Omega$ for some constant $C = C(n, L, \Omega', \Omega) \in (0, \infty)$.

Theorem 6 $(W^{2+k,2}$ Interior Regularity for $k \geq 1$). Let $k \geq 1$ be an integer. Let Ω be an open set in \mathbb{R}^n . Suppose $u \in W^{1,2}(\Omega)$ satisfies

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du = f$$
 weakly in Ω

for an elliptic operator L with coefficients a^{ij} , $b^i \in C^{k,1}(\Omega)$ and c^j , $d \in C^{k-1,1}(\Omega)$ and $f \in W^{k,2}_{loc}(\Omega)$. Then $u \in W^{k+2,2}_{loc}(\Omega)$ with

$$||u||_{W^{k+2,2}(\Omega')} \le C(||u||_{W^{1,2}(\Omega)} + ||f||_{W^{k,2}(\Omega)})$$

if $k \geq 1$ for every $\Omega' \subset\subset \Omega$ for some constant $C = C(n, k, L, \Omega', \Omega) \in (0, \infty)$.

Moreover, if Lu = f in Ω for some elliptic operator L with coefficients $a^{ij}, b^i, c^j, d \in C^{\infty}(\Omega)$ and some $f \in C^{\infty}(\Omega)$, then by the Sobolev embedding theorem $u \in C^{\infty}(\Omega)$.

The proof of interior regularity follows more or less from a difference quotient argument like before using induction on k and energy estimates in place of the Schauder estimates in the case k = 0. However, we need to establish that the obvious difference quotient operator

$$\delta_{l,h}u(x) = \frac{u(x + he_l) - u(x)}{h},\tag{20}$$

where $h \neq 0$ and l = 1, ..., n, has the correct properties in the case that u is a Sobolev function. We also need to be careful since $\delta_{l,h}f$ is not necessarily bounded locally in $W^{k,2}$ for $f \in W^{k,2}_{loc}(\Omega)$.

Lemma 2. Let $u \in W^{1,p}(\Omega)$ for $1 \leq p < \infty$. Then $\delta_{l,h}u \in L^p(\Omega')$ for any $\Omega' \subset\subset \Omega$ with $\operatorname{dist}(\Omega',\partial\Omega) > h$ and

$$\|\delta_{l,h}u\|_{L^p(\Omega')} \le \|D_lu\|_{L^p(\Omega)}.$$

Proof. Since $C^{\infty}(\Omega)$ is dense in $W^{1,p}(\Omega)$ (see Gillbarg and Trudinger Theorem 7.9), it suffices to consider $u \in C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$. We compute

$$\int_{\Omega'} |\delta_{l,h} u(x)|^p dx = \int_{\Omega'} \left| \frac{1}{h} \int_0^h D_l u(x+te_l) dt \right|^p dx \quad \text{(by the fundamental theorem of calculus)}$$

$$\leq \int_{\Omega'} \frac{1}{h} \int_0^h |D_l u(x+te_l)|^p dt dx \quad \text{(by H\"older's inequality)}$$

$$\leq \frac{1}{h} \int_0^h \int_{\Omega'} |D_l u(x+te_l)|^p dx dt \quad \text{(by Tonelli's theorem / Fubini's theorem)}$$

$$\leq \frac{1}{h} \int_0^h \int_{\Omega} |D_l u(y)|^p dy dt \quad \text{(by letting } y = x + te_l)}$$

$$\leq \int_{\Omega} |D_l u(y)|^p dy.$$

Lemma 3. Let $u \in L^p(\Omega)$ for 1 and suppose

$$\sup_{0<|h|$$

for every $\Omega' \subset\subset \Omega$ and $h_0 = \operatorname{dist}(\Omega', \partial\Omega)$. Then the weak derivative $D_l u \in L^p_{loc}(\Omega)$ exists and

$$||D_l u||_{L^p(\Omega')} \le \sup_{0<|h|< h_0} ||\delta_{l,h} u||_{L^p(\Omega')}.$$

for every $\Omega' \subset\subset \Omega$ and $h_0 = \operatorname{dist}(\Omega', \partial\Omega)$.

Proof. Example sheet.

Proof of $W^{2,2}$ Interior Regularity. Recall that

$$\int_{\Omega} ((a^{ij}D_j u + b^i u)D_i \zeta - (c^j D_j u + du)\zeta) = -\int_{\Omega} f\zeta$$

for every $\zeta \in W_0^{1,2}(\Omega)$. Since $b^i \in C^{0,1}(\Omega)$ and $u \in W^{1,2}(\Omega)$, by integration by parts,

$$\int_{\Omega} a^{ij} D_j u D_i \zeta = \int_{\Omega} ((b^i + c^i) D_i u + (D_i b^i + d) u - f) \zeta = \int_{\Omega} g \zeta$$

for every $\zeta \in W_0^{1,2}(\Omega)$, where $g = (b^i + c^i)D_i u + (D_i b^i + d)u - f$. Replace ζ by $\delta_{l,-h}\zeta$ to get

$$\int_{\Omega} a^{ij}(x+he_l) D_j \delta_{l,h} u(x) D_i \zeta(x) dx = \int_{\Omega} \delta_{l,h} (a^{ij} D_j u) D_i \zeta - \int_{\Omega} \delta_{l,h} a^{ij} D_j u D_i \zeta$$

$$= -\int_{\Omega} a^{ij} D_j u D_i \delta_{l,-h} \zeta - \int_{\Omega} \delta_{l,h} a^{ij} D_j u D_i \zeta$$

$$= -\int_{\Omega} g \delta_{l,-h} \zeta - \int_{\Omega} \delta_{l,h} a^{ij} D_j u D_i \zeta$$

for every $\zeta \in W_0^{1,2}(\Omega)$. Using (5), Cauchy-Schwartz, and the properties of difference quotients,

$$\left| \int_{\Omega} a^{ij}(x + he_l) D_j \delta_{l,h} u(x) D_i \zeta(x) dx \right| \leq \|g\|_{L^2(\Omega)} \|\delta_{l,-h} \zeta\|_{L^2(\Omega)} + C \|Du\|_{L^2(\Omega)} \|D\zeta\|_{L^2(\Omega)}$$

$$\leq C(\|g\|_{L^2(\Omega)} + \|Du\|_{L^2(\Omega)}) \|D\zeta\|_{L^2(\Omega)}$$

for every $\zeta \in W_0^{1,2}(\Omega)$, where $||g||_{L^2}$ and $||Du||_{L^2}$ are L^2 norms over the support of ζ , provided |h| is less than the distance of the support of ζ to $\partial\Omega$.

Choose $\Omega' \subset\subset \Omega$ and $\eta \in C_0^1(\Omega)$ satisfying $0 \leq \eta \leq 1$ on Ω , $\eta = 1$ on Ω' and $|D\eta| \leq 2/d(\Omega', \Omega)$. Then, taking $\zeta = \eta^2 \delta_{l,h} u$, for h sufficiently small (depending on the support of η) the previous computation, the ellipticity assumption, and the assumption that $|\eta| \leq 1$ imply that

$$\lambda \int_{\Omega} \eta^{2} |D\delta_{l,h}u|^{2} dx \leq \int_{\Omega} a^{ij}(x + he_{l})\eta^{2} D_{j} \delta_{l,h}u(x) D_{i} \delta_{l,h}u(x) dx$$

$$= \int_{\Omega} a^{ij}(x + he_{l}) D_{j} \delta_{l,h}u(x) D_{i}(\eta^{2} \delta_{l,h}u)(x) dx$$

$$- 2 \int_{\Omega} a^{ij}(x + he_{l})\eta \delta_{l,h}u(x) D_{j} \delta_{l,h}u(x) D_{i}\eta(x) dx$$

$$\leq C(1 + \|g\|_{L^{2}(\Omega)} + \|Du\|_{L^{2}(\Omega)}) (\|\eta D\delta_{l,h}u\|_{L^{2}(\Omega)} + \|(\delta_{l,h}u)D\eta\|_{L^{2}(\Omega)})$$

Absorbing the $D\delta_{l,h}u$ terms into the right hand side and using the above lemmas to relate the discrete difference quotient to the derivative, we find that

$$\frac{\lambda}{2} \int_{\Omega'} |D\delta_{l,h} u|^2 dx \le C \int_{\Omega} (|u|^2 + |Du|^2 + |g|^2) dx.$$

Thus, because $\delta_{l,h}Du$ is uniformly bounded in $L^2(\Omega')$, we see that $u \in W^{2,2}(\Omega)$. Letting $h \to 0$, the estimate follows.

Theorem 7 ($W^{k+2,2}$ Global Regularity). Let $k \geq 1$ be an integer. Let Ω be a C^{k+2} domain in \mathbb{R}^n . Suppose $u \in W^{1,2}(\Omega)$ satisfies

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du = f$$
 weakly in Ω

for an elliptic operator L with coefficients $a^{ij}, b^i \in C^{k,1}(\overline{\Omega}), c^j, d \in C^{k-1,1}(\overline{\Omega}), f \in W^{k,2}(\Omega),$ and $\varphi \in W^{k+2,2}(\Omega)$. Then $u \in W^{k+2,2}(\Omega)$ with

$$||u||_{W^{2,2}(\Omega)} \le C(||u||_{L^2(\Omega)} + ||f||_{L^2(\Omega)} + ||\varphi||_{W^{2,2}(\Omega)})$$

if k = 0 and

$$||u||_{W^{k+2,2}(\Omega)} \le C(||u||_{L^2(\Omega)} + ||f||_{W^{k,2}(\Omega)} + ||\varphi||_{W^{k+2,2}(\Omega)})$$

if $k \geq 1$ for some constant $C = C(n, k, L, \Omega) \in (0, \infty)$.

Moreover, if Lu = f in Ω and $u = \varphi$ on $\partial\Omega$ for some elliptic operator L with coefficients $a^{ij}, b^i, c^j, d \in C^{\infty}(\overline{\Omega})$ and some $f, \varphi \in C^{\infty}(\overline{\Omega})$, then by the Sobolev embedding theorem $u \in C^{\infty}(\overline{\Omega})$.

The proof is fairly standard. We proceed by induction on k. To prove the $W^{2,2}$ regularity near a point $y \in \partial \Omega$, we can reduce to the case where $\varphi = 0$ by replacing u with $u - \varphi$ and we can replace to the case where y = 0 and $\Omega \cap B_R(0) = B_R^+$ by using a C^1 diffeomorphism. By applying the difference quotient argument in the proof of $W^{2,2}$ interior regularity, using the fact that $\eta^2 u \in W_0^{1,2}(\Omega)$ when $\eta \in C_c^{\infty}(\mathbb{R}^n)$ is the cutoff function such that $\eta = 1$ on $B_{R/2}$, $\eta = 0$ on $\mathbb{R}^n \setminus B_R$, and $|D\eta| \leq 3/R$, we can show that $D_l u \in W^{1,2}(B_{R/2}^+)$ for $l = 1, 2, \ldots, n-1$. By the differential equation,

$$a^{nn}D_{nn}u = f - \sum_{(i,j)\neq(n,n)} a^{ij}D_{ij}u - \sum_{j=1}^{n} \left(\sum_{i=1}^{n} D_i a^{ij} + b^j + c^j\right)D_ju - \left(\sum_{i=1}^{n} D_i b^i + d\right)u \in L^2(B_{R/2}^+),$$

completing the proof that $u \in W^{2,2}(B_{R/2}^+)$.

Note that as an immediate consequence of the existence theory and global regularity, whenever Ω is a C^{∞} domain, $a^{ij}, b^i, c^i, d \in C^{\infty}(\overline{\Omega})$ satisfy (4), (5), and (7), and $f \in C^{\infty}(\overline{\Omega})$, there exists a unique function $u \in C^{\infty}(\Omega)$ such that Lu = f weakly in Ω and $u = \varphi$ on $\partial\Omega$. As was discussed previously, this implies that Lu = f pointwise in Ω and $u = \varphi$ pointwise on $\partial\Omega$.

Note that by using the scaling argument from the proof of the $C^{2,\mu}$ Schauder estimates for classical solutions, we also get $C^{1,\mu}$ Schauder estimates on weak solutions to elliptic equations in divergence form. For example:

Theorem 8 (Interior $C^{1,\mu}$ Estimate). Let $\mu \in (0,1)$. Suppose $u \in C^{1,\mu}(\overline{B_R(x_0)})$ satisfies

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^jD_ju + du = D_if + g$$
 weakly in $B_R(x_0)$

where

$$a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$$
 for a.e. $x \in B_R(x_0)$ and all $\xi \in \mathbb{R}^n$

for some constant $\lambda > 0$ and $a^{ij}, b^i \in C^{0,\mu}(\overline{B_R(x_0)})$ and $c^i, d \in C^0(\overline{B_R(x_0)})$ such that

$$|a^{ij}|'_{0,\mu;B_R(x_0)} + R|b^i|'_{0,\mu;B_R(x_0)} + R|c^i|_{0;B_R(x_0)} + R^2|d|_{0;B_R(x_0)} \le \le \nu$$

for some constant $\nu \in (0, \infty)$ and $f^i \in C^{0,\mu}(\overline{B_R(x_0)})$ and $g \in C^0(\overline{B_R(x_0)})$. Then

$$|u|'_{1,\mu;B_{R/2}(x_0)} \le C(||u||_{L^2(B_R(x_0))} + R^{1+\mu}[f]_{\mu;B_R(x_0)} + R^2|g|_{0;B_R(x_0)})$$

for some constant $C = C(n, \lambda, \nu) \in (0, \infty)$.

References: Gilbarg and Trudinger, Chapter 8.