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1 Definitions and notation

Let Ω be a domain in Rn. We say that u ∈ W 1,2(Ω) satisfies

Lu = Di(a
ijDju+ biu) + cjDju+ du = Dif

i + g weakly in Ω, (1)

where the coefficients aij, bi, cj, and d are measurable functions on Ω and f i, g ∈ L2(Ω), if∫
Ω

((aijDju+ biu)Diζ − (cjDju+ du)ζ) =

∫
Ω

(f iDiζ − gζ) (2)

for all test functions ζ ∈ C∞c (Ω). We call u a weak solution to (1). Note that if (2) holds true
for all ζ ∈ C∞c (Ω), then by a continuity argument using C∞c (Ω) being dense in W 1,2

0 (Ω), (2) holds
true for all ζ ∈ W 1,2

0 (Ω)
Observe that if the functions u, aij, bi, cj, d, f i, and g were sufficiently smooth on Ω, for

example u ∈ C2(Ω), aij, bi, f ∈ C1(Ω), and cj, d, g ∈ C0(Ω), then by integration by parts,

Lu = Di(a
ijDju+ biu) + cjDju+ du = Dif

i + g pointwise in Ω (3)

implies that (2) holds true and conversely (2) implies that

−
∫

Ω

Luζ = −
∫

Ω

(Dif
i + g)ζ

for all ζ ∈ C∞c (Ω), which since ζ is arbitrary implies (3). However, (3) does not make sense under
the weaker regularity conditions that u ∈ W 1,2(Ω), aij, bi, cj, and d are measurable functions on
Ω, and f i, g ∈ L2(Ω), whereas (2) does make sense under the weaker regularity conditions.

We shall assume the ellipticity condition

aij(x)ξiξj ≥ λ|ξ|2 for a.e. x ∈ Ω and for all ξ ∈ Rn (4)

for some constant λ > 0. Note that for equations in divergence form we cannot assume that
aij(x) = aji(x) for a.e. x ∈ Ω. It will be standard to assume that the coefficients are bounded
with

n∑
i,j=1

|aij(x)|2 ≤ Λ2, λ−2

n∑
i=1

(|bi(x)|2 + |ci(x)|2) + λ−1|di(x)| ≤ ν2 for a.e. x ∈ Ω (5)
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for some constants Λ, ν ∈ (0,∞).
We can similarly consider differential inequalities

Lu = Di(a
ijDju+ biu) + cjDju+ du ≥ (≤)Dif

i + g weakly in Ω

for u ∈ W 1,2(Ω), which we take to mean that∫
Ω

((aijDju+ biu)Diζ − (cjDju+ du)ζ) ≤ (≥)

∫
Ω

(f iDiζ − gζ) (6)

for all non-negative ζ ∈ C∞c (Ω) (or equivalently for all ζ ∈ W 1,2
0 (Ω)).

We also want to consider the Dirichlet problem

Di(a
ijDju+ biu) + cjDju+ du = Dif

i + g weakly in Ω,

u = ϕ on ∂Ω,

where u ∈ W 1,2(Ω), the coefficients aij, bi, cj, and d are bounded measurable functions on Ω,
f i, g ∈ L2

loc(Ω), and ϕ ∈ W 1,2(Ω). By u = ϕ on ∂Ω, we mean that

u− ϕ ∈ W 1,2
0 (Ω).

Note that if Ω, u, and ϕ are sufficiently smooth, namely Ω is a C1 domain and u, ϕ ∈ C1(Ω), then
u − ϕ ∈ W 1,2

0 (Ω) implies that u = ϕ pointwise on ∂Ω. To see this, recall that u − ϕ ∈ W 1,2
0 (Ω)

means that there exists a sequence of functions vj ∈ C∞c (Ω) such that vj → u − ϕ in W 1,2(Ω).
Thus ∫

∂Ω

(u− ϕ)ζ · ν =

∫
Ω

(D(u− ϕ) · ζ + (u− ϕ) div ζ)

= lim
j→∞

∫
Ω

(Dvj · ζ + vj div ζ)

= lim
j→∞

∫
∂Ω

vjζ · ν

= 0,

for all ζ ∈ C∞c (Rn;Rn), where ν denotes the outward unit normal to ∂Ω. Since ζ is arbitrary,
u = ϕ pointwise on ∂Ω.

2 Maximum principle

Let Ω be a bounded domain in Rn. Let u ∈ W 1,2(Ω). By supΩ u we mean the essential supremum,
i.e.

sup
Ω
u = inf{k ∈ R : u ≤ k a.e. in Ω}.

By sup∂Ω u, we mean
sup
∂Ω

u = inf{k ∈ R : (u− k)+ ∈ W 1,2
0 (Ω)},

where v+(x) = max{v(x), 0} for measurable functions v on Ω. Using the fact that limε↓0 Ln({x ∈
Ω : 0 < u(x)− sup∂Ω u < ε}) = 0 and W 1,2

0 (Ω) is closed in W 1,2(Ω), given easy to see that (u−k)+
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converges to (u− sup∂Ω u)+ in W 1,2
0 (Ω) as k ↓ sup∂Ω u, so in particular (u− sup∂Ω u)+ ∈ W 1,2

0 (Ω).
We can similarly define

inf
Ω
u = sup{k ∈ R : u ≥ k a.e. in Ω},

inf
∂Ω
u = sup{k ∈ R : (u− k)− ∈ W 1,2

0 (Ω)}.

where v−(x) = min{v(x), 0} for measurable functions v on Ω. Given u ∈ W 1,2(Ω), obviously u ≤ v
means that u ≤ v a.e. in Ω. We say u ≤ v on ∂Ω if (u− v)+ ∈ W 1,2

0 (Ω).

Theorem 1 (Weak maximum principle). Let Ω be a bounded domain in Rn. Suppose u ∈ W 1,2(Ω)
satisfies

Lu = Di(a
ijDju+ biu) + cjDju+ du ≥ 0 in Ω

where aij, bi, cj, and d are measurable function on Ω satisfying (4) and (5) for some constants
0 < λ,Λ, ν <∞ and ∫

Ω

(−biDiζ + dζ) ≤ 0 (7)

for all nonnegative ζ ∈ W 1,1
0 (Ω). Then

sup
Ω
u ≤ sup

∂Ω
u+,

where u+(x) = max{u(x), 0} for x ∈ Ω.

Heuristically,

Lu = Di(a
ijDju+ biu) + cjDju+ du = aijDiju+ (Dia

i + bi + ci)Diu+ (Dib
i + d)u in Ω.

Since if bi and d are sufficiently smooth (bi ∈ W 1,1(Ω) and d ∈ L1(Ω) is sufficient), then by
integration by parts Dib

i + d ≤ 0 a.e. in Ω is equivalent to (7). Thus we can interpret (7) as
meaning that Dib

i + d ≤ 0 weakly in Ω. (7) is the analogue to c ≤ 0 in the case of the classical
elliptic operator Lu = aijDiju+ biDiu+ cu.

Proof of the weak maximum principle. We will use a standard type of proof technique using the
weak inequality ∫

Ω

((aijDju+ biu)Diζ − (cjDju+ du)ζ) ≤ 0. (8)

for all nonnegative ζ ∈ W 1,2
0 (Ω).

Our first step it to use (7) to simplify the inequality. By rewriting (8) and using (7),∫
Ω

(aijDjuDiζ − (bj + cj)Djuζ) ≤
∫

Ω

(−biDi(uζ) + d(uζ)) ≤ 0. (9)

for all ζ ∈ W 1,2
0 (Ω) such that ζ ≥ 0 and uζ ≥ 0 a.e. in Ω. Note that u ∈ W 1,2(Ω) and ζ ∈ W 1,2

0 (Ω)
implies that uζ ∈ W 1,1

0 (Ω).
The case where bj + cj = 0 a.e. in Ω is particularly easy. We now will chose a particular test

function ζ in (9), namely ζ = (u− l)+ for l = sup∂Ω u
+. Note that this ζ is indeed in W 1,2

0 (Ω). By
(9) obtain ∫

Ω

aijDjζDiζ ≤ 0.
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By (4),

λ

∫
Ω

|Dζ|2 ≤ 0,

so Dζ = 0 a.e. in Ω. Thus ζ is constant on Ω. In particular, since ζ ∈ W 1,2
0 (Ω), ζ = 0 a.e. in Ω.

Therefore
sup

Ω
u ≤ l = sup

∂Ω
u+.

Now suppose bj + cj is not identically zero on Ω. By way of contradiction suppose that

sup
∂Ω

u+ < sup
Ω
u.

Let l ∈ R such that
sup
∂Ω

u+ < l < sup
Ω
u.

Now we proceed with a standard type of argument. Like before, we choose our test function ζ, in
particular we choose ζ = (u− l)+ in (9). We note that ζ ∈ W 1,2

0 (Ω). Then by (9)∫
Ω

aijDjζDiζ − (bj + cj)ζDjζ) ≤ 0.

Next we rewrite this inequality as∫
Ω

aijDjζDiζ ≤
∫

Ω

(bj + cj)ζDjζ

so that the integral of aijDjζDiζ is on the left hand side and everything else is on the right hand
side. Then by (4) and (5),

λ

∫
Ω

|Dζ|2 ≤ 2λν

∫
Ω

ζ|Dζ|.

Next we move all the Dζ terms to the left hand side using the Cauchy inequality ab ≤ 1
4
a2 + b2

for a, b ≥ 0 to get

λ

∫
Ω

|Dζ|2 ≤ λ

2

∫
Ω

|Dζ|2 + 2λν2

∫
Γ

|ζ|2

where Γ = {x ∈ Ω : Dζ(x) 6= 0}, and then move the integral of |Dζ|2 to the left hand side to get∫
Ω

|Dζ|2 ≤ 4ν2

∫
Γ

|ζ|2. (10)

Note that here we used the fact that ζ|Dζ| = 0 on Ω \ Γ to get an integral over Γ on the right
hand side of (10). This will be important in a moment. The next step is to apply the Sobolev
inequality on the left hand side to obtain

1

C2
‖ζ‖2

L2n/(n−2) ≤ 4ν2

∫
Γ

|ζ|2

for some constant C = C(n) ∈ (0,∞) and then apply the Hölder inequality to the right hand side
to obtain

1

C2
‖ζ‖2

L2n/(n−2) ≤ 4ν2|Γ|2/n‖ζ‖2
L2n/(n−2) ,
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where |S| denotes the Lebesgue measure of a set S, which by cancelling ‖ζ‖L2n/(n−2) > 0 implies

(2Cν)−n ≤ |Γ|. (11)

Now the application of the Sobolev inequality to the left hand side of (10) only makes sense if
n > 2. If n = 2, let 1 < n̂ < 2. and note that by the (10), Sobolev inequality, and the Hölder
inequality

1

C
‖ζ‖L2n̂/(2−n̂)(Γ) ≤ ‖Dζ‖Ln̂(Γ)

≤ |Γ|1/n̂−1/2‖Dζ‖L2(Γ)

≤ 2ν|Γ|1/n̂−1/2‖ζ‖L2(Γ) (by (10))

≤ 2ν|Γ|1/2‖ζ‖L2n̂/(2−n̂)(Γ)

so cancelling ‖ζ‖L2n̂/(2−n̂)(Γ) yields (11) in the case n = 2. Since Γ is where ζ = (u − l)+ satisfies
ζ ≥ 0 and Dζ 6= 0, we can rewrite (11) as

C ≤ |{x : u(x) ≥ l, Du(x) 6= 0}|. (12)

Note that the set on the right hand side of (12) is decreasing (with respect to set inclusion ⊆) as
l increases. If supΩ u = ∞, let l ↑ ∞ in (12)to obtain u(x) = ∞ on a subset of Ω with positive
measure, which contradicts u ∈ L2(Ω). If supΩ u <∞, let l increase to supΩ u in (12), we obtain
u = supΩ u and Du 6= 0 on a subset of Ω of positive measure, which is impossible by Lemma 1
below.

Lemma 1. Let u ∈ W 1,2(Ω). If u is constant on some measurable set S in Ω, then Du = 0 a.e.
on S.

Proof. WLOG suppose u = 0 on S.
Recall that if f : R → R is a C1 function with bounded derivative and u ∈ W 1,2(Ω), then

f(u) ∈ W 1,2(Ω) with weak derivative f ′(u)Du. We claim that for u+(x) = max{u(x), 0}, u+ ∈
W 1,2(Ω) with Du+(x) = Du(x) at a.e. x ∈ Ω with u(x) > 0 and Du+(x) = 0 for a.e. x ∈ Ω with
u(x) ≤ 0. To see this, for ε > 0 let fε : R → R a smooth, convex function with fε(t) = 0 for
t ≤ ε/2 and f ′ε(t) = 1 for t ≥ ε. Fix a test function ζ ∈ C∞c (Ω). Since fε(t) = 0 for t ≤ 0 and
t− ε < fε(t) ≤ t for t ≥ 0, ∣∣∣∣∫

Ω

u+Dζ −
∫

Ω

fε(u)Dζ

∣∣∣∣ ≤ ε

∫
Ω

|ζ| → 0

as ε ↓ 0. Hence

−
∫

Ω

u+Dζ = lim
ε↓0
−
∫

Ω

fε(u)Dζ = lim
ε↓0

∫
Ω

f ′ε(u)Duζ =

∫
Ω∩{u>0}

Duζ,

where the last step follows from the dominated convergence theorem and the fact that f ′ε(u) = 0
if u ≤ 0 and f ′ε(u) ↑ 1 if u > 0.

By the same argument, we can show that for u−(x) = min{u(x), 0}, u− ∈ W 1,2(Ω) with
Du−(x) = Du(x) at a.e. x ∈ Ω with u(x) < 0 and Du−(x) = 0 for a.e. x ∈ Ω with u(x) ≥ 0.

Since u = 0 a.e. on S, Du+ = Du− = 0 a.e. on S. Since u = u+ + u−, Du = Du+ +Du− = 0
a.e. on S.

Corollary 1 (Uniqueness for the Dirichlet Problem). Consider L as above (i.e., satisfying (4), (5),
and (7)) Suppose u, v ∈ W 1,2(Ω) such that Lu = Lv in Ω and u = v on ∂Ω (i.e. u−v ∈ W 1,2

0 (Ω)).
Then u = v a.e. in Ω.
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3 Existence theory

Recall the following:

Theorem 2 (Lax Milgram). Let H be a Hilbert space, B : H ×H → R be a bilinear functional
that is

Bounded: |B(x, y)| ≤ C1‖x‖H‖y‖H for all x, y ∈ H for some constant C1 ∈ (0,∞) and

Coercive: B(x, x) ≥ C2‖x‖2
H for all x ∈ H for some constant C2 ∈ (0,∞).

Let F : H → R be a bounded linear functional on H. Then there exists a unique element z ∈ H
such that

B(z, x) = F (x) for all x ∈ H. (13)

Moreover, ‖z‖H ≤ (1/C2)‖F‖. (References: Gilbarg and Trudinger, Theorem 5.8)

Proof. For every x ∈ H, by Riesz representation applied to the bounded linear functional B(x, .),
there is a unique element Tx ∈ H such that B(x, y) = (Tx, y)H and ‖B(x, .)‖H∗ = ‖Tx‖H. Since
B is bilinear, T : H → H is linear. Also by Riesz representation applied to F , there is a unique
w ∈ H such that F (x) = (w, x) for all x ∈ H. Thus (13) is equivalent to

(Tz, x) = (w, x) for all x ∈ H, (14)

which is in turn equivalent to
Tz = w. (15)

((14) implies (15) by choosing x = Tz − w.) Thus in order to show that there is a solution z to
(13) with ‖z‖H ≤ (1/C2)‖F‖, it suffices to show that T has an inverse function T−1 : H → H
which is a bounded linear map with norm ‖T−1‖ ≤ 1/C2.

Since B is coercive,

C2‖x‖2
H ≤ B(x, x) = (x, Tx) ≤ ‖x‖H‖Tx‖H,

so
C2‖x‖H ≤ ‖Tx‖H. (16)

Now we use (16) to show that T : H → H is bijective and ‖T−1‖ ≤ 1/2C2:

(1) T is injective: If Tx1 = Tx2 for some x1, x2 ∈ H then T (x1 − x2) = 0 in H and by (16)
‖x1 − x2‖H = 0, so x1 = x2.

(2) T has closed range: Suppose xj ∈ H such that Txj → y in H. Then by (16)

‖xj − xk‖H ≤
1

C2

‖Txj − Txk‖H → 0

as j, k →∞, so xj is Cauchy. Thus xj converges to some x in H and y = Tx. .

(3) The range T (H) of T is H: Suppose there is a x ∈ T (H)⊥. By coercivity,

C2‖x‖2
H ≤ B(x, x) = (Tx, x)H = 0,

so x = 0. Therefore T (H) = H.
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(4) ‖T−1‖ ≤ 1/C2: Let y = T−1x. Then by (16),

‖T−1x‖H = ‖y‖H ≤
1

C2

‖Ty‖H =
1

C2

‖x‖H.

Theorem 3. Let Ω be a domain in Rn. Let aij, bi, cj, d ∈ L∞(Ω) be coefficients satisfying (4) and
(5) for some constants 0 < λ,Λ, ν <∞ and (7). For every f i, g ∈ L2(Ω) and ϕ ∈ W 1,2(Ω), there
is a unique solution u ∈ W 1,2(Ω) to the Dirichlet problem

Lu = Dif
i + g weakly in Ω,

u = ϕ on ∂Ω. (17)

Moreover,
‖u‖W 1,2(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω) + ‖ϕ‖W 1,2(Ω)).

Proof. By the maximum principle, the solution to the Dirichlet problem is unique if it exists, so
what remains to show is the existence of solutions. By replacing u with v = u−ϕ and solving for
v such that Lv = Dif

i + g − Lϕ weakly in Ω and v = 0 on ∂Ω, it suffices to assume that ϕ = 0
a.e. on Ω.

Define the bounded bilinear functional L : W 1,2
0 (Ω)×W 1,2

0 (Ω)→ R by

L(u, v) =

∫
Ω

(aijDjuDiv + biuDiv − cjDjuv − duv)

and define the bounded linear functional F : W 1,2
0 (Ω)→ R by

F (ζ) =

∫
Ω

(f iDiζ − gζ).

Clearly solving for u ∈ W 1,2(Ω) satisfying (17) with ϕ = 0 is equivalent to solving for u ∈ W 1,2
0 (Ω)

such that
L(u, ζ) = F (ζ) for all ζ ∈ W 1,2

0 (Ω). (18)

By Lax-Milgram, it suffices to show that L is coercive. Unfortunately, we only have

L(v, v) =

∫
Ω

(aijDivDjv + (bi − ci)vDiv − dv2)

≥ λ

∫
Ω

|Dv|2 − λ
∫

Ω

(2ν|v||Dv|+ ν2|v|2) (by (4) and (5))

≥ λ

2

∫
Ω

|Dv|2 − 3λν2

∫
Ω

v2 (by Cauchy’s inequality),

so L is not necessarily coercive.
If we instead considered the problem of solving for u ∈ W 1,2

0 (Ω) such that

Lσu ≡ Lu− σu = Dif
i + g weakly in Ω
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for given f i, g ∈ W 1,2
0 (Ω), then the corresponding bilinear form

Lσ(u, v) =

∫
Ω

(aijDjuDiv + biuDiv − cjDjuv + (−d+ σ)uv)

would satisfy

Lσ(v, v) ≥ λ

2

∫
Ω

|Dv|2 + (σ − 3λν2)

∫
Ω

v2,

so Lσ is obviously coercive provided σ is sufficiently large. By Lax-Milgram, there exists an inverse
map L−1

σ : W 1,2
0 (Ω)∗ → W 1,2

0 (Ω) such that for every bounded linear functional F ∈ W 1,2
0 (Ω)∗,

u = TF is the solution to Lσu = F weakly in Ω, i.e. Lσ(u, ζ) = F (ζ) for all ζ ∈ W 1,2
0 (Ω).

Observe that Lu = F weakly in Ω, where F ∈ W 1,2
0 (Ω)∗, is equivalent to

u+ σL−1
σ u = L−1

σ F in Ω. (19)

We know
L−1
σ : W 1,2

0 (Ω) ⊂ L2(Ω) ⊂ W 1,2
0 (Ω)∗ → W 1,2

0 (Ω),

which is compact since the embedding W 1,2
0 (Ω) ⊂ L2(Ω) is compact by Rellich’s lemma. Note that

here the embedding L2(Ω) ⊂ W 1,2
0 (Ω)∗ is defined by mapping v ∈ L2(Ω) to the linear functional

ζ 7→
∫

Ω
vζ. Since L−1

σ is a compact linear operator between Banach spaces, by spectral theory

for L−1
σ either −1/σ is an eigenvalue of L−1

σ or (19) has a unique solution u ∈ W 1,2
0 (Ω) for all

F ∈ W 1,2
0 (Ω)∗ and ‖u‖W 1,2(Ω) ≤ C‖F‖ for some C = C(λ,Λ, ν) ∈ (0,∞). Since the solution to

the Dirichlet problem for L is unique by the maximum principle, in particular Lu = 0 weakly in
Ω only when u = 0, −1/σ is not an eigenvalue of L−1

σ and thus there exists a unique solution
u ∈ W 1,2

0 (Ω) to Lu = F weakly in Ω for every F ∈ W 1,2
0 (Ω)∗.

The spectral theory for L−1
σ , we obtain the Fredholm alternative for equations in divergence

form:

Theorem 4 (Fredholm alternative). Let

Lu = Di(a
ijDju+ biu) + cjDju+ du in Ω

for u ∈ W 1,2(Ω), where aij, bi, cj, d ∈ L∞(Ω) satisfying (4) and (5). There exists a countable,
discrete set Σ ⊂ R such that

(a) if λ 6∈ Σ, the Dirichlet problem, Lu + λu = Dif
i + g in Ω, u = ϕ on ∂Ω, has a unique

solution u ∈ W 1,2(Ω) for all f i, g ∈ L2(Ω) and ϕ ∈ W 1,2(Ω), and

(b) if λ ∈ Σ, the homogeneous problem, Lu+λu = 0 in Ω, u = 0 on ∂Ω, has a finite dimensional
subspace of nontrivial solutions u ∈ W 1,2

0 (Ω). We call λ a Dirichlet eigenvalue of L.

(Note that some books, for example Gilbarg and Trudinger, define Σ as the set of λ such that
there is a nontrivial solution u ∈ W 1,2

0 (Ω) to Lu− λu = 0 in Ω.)
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4 Regularity theory

Theorem 5 (W 2,2 Interior Regularity). Let Ω be an open set in Rn. Suppose u ∈ W 1,2(Ω) satisfies

Lu = Di(a
ijDju+ biu) + cjDju+ du = f weakly in Ω

for an elliptic operator L with coefficients aij, bi ∈ C0,1(Ω) and cj, d ∈ L∞loc(Ω) and a function f
with f ∈ L2

loc(Ω). By elliptic, we just require that aij(x)ξiξj ≥ λ|ξ|2 for some λ ∈ (0,∞). Then
u ∈ W 2,2

loc (Ω) with
‖u‖W 2,2(Ω′) ≤ C(‖u‖W 1,2(Ω) + ‖f‖L2(Ω))

for every Ω′ ⊂⊂ Ω for some constant C = C(n, L,Ω′,Ω) ∈ (0,∞).

Theorem 6 (W 2+k,2 Interior Regularity for k ≥ 1). Let k ≥ 1 be an integer. Let Ω be an open
set in Rn. Suppose u ∈ W 1,2(Ω) satisfies

Lu = Di(a
ijDju+ biu) + cjDju+ du = f weakly in Ω

for an elliptic operator L with coefficients aij, bi ∈ Ck,1(Ω) and cj, d ∈ Ck−1,1(Ω) and f ∈ W k,2
loc (Ω).

Then u ∈ W k+2,2
loc (Ω) with

‖u‖Wk+2,2(Ω′) ≤ C(‖u‖W 1,2(Ω) + ‖f‖Wk,2(Ω))

if k ≥ 1 for every Ω′ ⊂⊂ Ω for some constant C = C(n, k, L,Ω′,Ω) ∈ (0,∞).
Moreover, if Lu = f in Ω for some elliptic operator L with coefficients aij, bi, cj, d ∈ C∞(Ω)

and some f ∈ C∞(Ω), then by the Sobolev embedding theorem u ∈ C∞(Ω).

The proof of interior regularity follows more or less from a difference quotient argument like
before using induction on k and energy estimates in place of the Schauder estimates in the case
k = 0. However, we need to establish that the obvious difference quotient operator

δl,hu(x) =
u(x+ hel)− u(x)

h
, (20)

where h 6= 0 and l = 1, . . . , n, has the correct properties in the case that u is a Sobolev function.
We also need to be careful since δl,hf is not necessarily bounded locally in W k,2 for f ∈ W k,2

loc (Ω).

Lemma 2. Let u ∈ W 1,p(Ω) for 1 ≤ p < ∞. Then δl,hu ∈ Lp(Ω′) for any Ω′ ⊂⊂ Ω with
dist(Ω′, ∂Ω) > h and

‖δl,hu‖Lp(Ω′) ≤ ‖Dlu‖Lp(Ω).

Proof. Since C∞(Ω) is dense in W 1,p(Ω) (see Gillbarg and Trudinger Theorem 7.9), it suffices to
consider u ∈ C∞(Ω) ∩W 1,p(Ω). We compute∫

Ω′
|δl,hu(x)|pdx =

∫
Ω′

∣∣∣∣1h
∫ h

0

Dlu(x+ tel)dt

∣∣∣∣p dx (by the fundamental theorem of calculus)

≤
∫

Ω′

1

h

∫ h

0

|Dlu(x+ tel)|pdtdx (by Hölder’s inequality)

≤ 1

h

∫ h

0

∫
Ω′
|Dlu(x+ tel)|pdxdt (by Tonelli’s theorem / Fubini’s theorem)

≤ 1

h

∫ h

0

∫
Ω

|Dlu(y)|pdydt (by letting y = x+ tel)

≤
∫

Ω

|Dlu(y)|pdy.
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Lemma 3. Let u ∈ Lp(Ω) for 1 < p <∞ and suppose

sup
0<|h|<h0

‖δl,hu‖Lp(Ω′) <∞ (21)

for every Ω′ ⊂⊂ Ω and h0 = dist(Ω′, ∂Ω). Then the weak derivative Dlu ∈ Lploc(Ω) exists and

‖Dlu‖Lp(Ω′) ≤ sup
0<|h|<h0

‖δl,hu‖Lp(Ω′).

for every Ω′ ⊂⊂ Ω and h0 = dist(Ω′, ∂Ω).

Proof. Example sheet.

Proof of W 2,2 Interior Regularity. Recall that∫
Ω

((aijDju+ biu)Diζ − (cjDju+ du)ζ) = −
∫

Ω

fζ

for every ζ ∈ W 1,2
0 (Ω). Since bi ∈ C0,1(Ω) and u ∈ W 1,2(Ω), by integration by parts,∫

Ω

aijDjuDiζ =

∫
Ω

((bi + ci)Diu+ (Dib
i + d)u− f)ζ =

∫
Ω

gζ

for every ζ ∈ W 1,2
0 (Ω), where g = (bi + ci)Diu+ (Dib

i + d)u− f . Replace ζ by δl,−hζ to get∫
Ω

aij(x+ hel)Djδl,hu(x)Diζ(x) dx =

∫
Ω

δl,h(a
ijDju)Diζ −

∫
Ω

δl,ha
ij DjuDiζ

= −
∫

Ω

aij DjuDiδl,−hζ −
∫

Ω

δl,ha
ij DjuDiζ

= −
∫

Ω

g δl,−hζ −
∫

Ω

δl,ha
ij DjuDiζ

for every ζ ∈ W 1,2
0 (Ω). Using (5), Cauchy-Schwartz, and the properties of difference quotients,∣∣∣∣∫

Ω

aij(x+ hel)Djδl,hu(x)Diζ(x) dx

∣∣∣∣ ≤ ‖g‖L2(Ω)‖δl,−hζ‖L2(Ω) + C‖Du‖L2(Ω)‖Dζ‖L2(Ω)

≤ C(‖g‖L2(Ω) + ‖Du‖L2(Ω))‖Dζ‖L2(Ω)

for every ζ ∈ W 1,2
0 (Ω), where ‖g‖L2 and ‖Du‖L2 are L2 norms over the support of ζ, provided |h|

is less than the distance of the support of ζ to ∂Ω.
Choose Ω′ ⊂⊂ Ω and η ∈ C1

0(Ω) satisfying 0 ≤ η ≤ 1 on Ω, η = 1 on Ω′ and |Dη| ≤ 2/d(Ω′,Ω).
Then, taking ζ = η2δl,hu, for h sufficiently small (depending on the support of η) the previous
computation, the ellipticity assumption, and the assumption that |η| ≤ 1 imply that

λ

∫
Ω

η2|Dδl,hu|2dx ≤
∫

Ω

aij(x+ hel)η
2Djδl,hu(x)Diδl,hu(x)dx

=

∫
Ω

aij(x+ hel)Djδl,hu(x)Di(η
2δl,hu)(x)dx

− 2

∫
Ω

aij(x+ hel)ηδl,hu(x)Djδl,hu(x)Diη(x)dx

≤ C(1 + ‖g‖L2(Ω) + ‖Du‖L2(Ω))(‖ηDδl,hu‖L2(Ω) + ‖(δl,hu)Dη‖L2(Ω))
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Absorbing the Dδl,hu terms into the right hand side and using the above lemmas to relate the
discrete difference quotient to the derivative, we find that

λ

2

∫
Ω′
|Dδl,hu|2dx ≤ C

∫
Ω

(|u|2 + |Du|2 + |g|2)dx.

Thus, because δl,hDu is uniformly bounded in L2(Ω′), we see that u ∈ W 2,2(Ω). Letting h → 0,
the estimate follows.

Theorem 7 (W k+2,2 Global Regularity). Let k ≥ 1 be an integer. Let Ω be a Ck+2 domain in
Rn. Suppose u ∈ W 1,2(Ω) satisfies

Lu = Di(a
ijDju+ biu) + cjDju+ du = f weakly in Ω

for an elliptic operator L with coefficients aij, bi ∈ Ck,1(Ω), cj, d ∈ Ck−1,1(Ω), f ∈ W k,2(Ω), and
ϕ ∈ W k+2,2(Ω). Then u ∈ W k+2,2(Ω) with

‖u‖W 2,2(Ω) ≤ C(‖u‖L2(Ω) + ‖f‖L2(Ω) + ‖ϕ‖W 2,2(Ω))

if k = 0 and
‖u‖Wk+2,2(Ω) ≤ C(‖u‖L2(Ω) + ‖f‖Wk,2(Ω) + ‖ϕ‖Wk+2,2(Ω))

if k ≥ 1 for some constant C = C(n, k, L,Ω) ∈ (0,∞).
Moreover, if Lu = f in Ω and u = ϕ on ∂Ω for some elliptic operator L with coefficients

aij, bi, cj, d ∈ C∞(Ω) and some f, ϕ ∈ C∞(Ω), then by the Sobolev embedding theorem u ∈ C∞(Ω).

The proof is fairly standard. We proceed by induction on k. To prove the W 2,2 regularity
near a point y ∈ ∂Ω, we can reduce to the case where ϕ = 0 by replacing u with u − ϕ and we
can replace to the case where y = 0 and Ω ∩ BR(0) = B+

R by using a C1 diffeomorphism. By
applying the difference quotient argument in the proof of W 2,2 interior regularity, using the fact
that η2u ∈ W 1,2

0 (Ω) when η ∈ C∞c (Rn) is the cutoff function such that η = 1 on BR/2, η = 0 on
Rn \ BR, and |Dη| ≤ 3/R, we can show that Dlu ∈ W 1,2(B+

R/2) for l = 1, 2, . . . , n − 1. By the
differential equation,

annDnnu = f −
∑

(i,j)6=(n,n)

aijDiju−
n∑
j=1

(
n∑
i=1

Dia
ij + bj + cj

)
Dju−

(
n∑
i=1

Dib
i + d

)
u ∈ L2(B+

R/2),

completing the proof that u ∈ W 2,2(B+
R/2).

Note that as an immediate consequence of the existence theory and global regularity, whenever
Ω is a C∞ domain, aij, bi, ci, d ∈ C∞(Ω) satisfy (4), (5), and (7), and f ∈ C∞(Ω), there exists a
unique function u ∈ C∞(Ω) such that Lu = f weakly in Ω and u = ϕ on ∂Ω. As was discussed
previously, this implies that Lu = f pointwise in Ω and u = ϕ pointwise on ∂Ω.

Note that by using the scaling argument from the proof of the C2,µ Schauder estimates for
classical solutions, we also get C1,µ Schauder estimates on weak solutions to elliptic equations in
divergence form. For example:

Theorem 8 (Interior C1,µ Estimate). Let µ ∈ (0, 1). Suppose u ∈ C1,µ(BR(x0)) satisfies

Lu = Di(a
ijDju+ biu) + cjDju+ du = Dif + g weakly in BR(x0)
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where
aij(x)ξiξj ≥ λ|ξ|2 for a.e. x ∈ BR(x0) and all ξ ∈ Rn

for some constant λ > 0 and aij, bi ∈ C0,µ(BR(x0)) and ci, d ∈ C0(BR(x0)) such that

|aij|′0,µ;BR(x0) +R|bi|′0,µ;BR(x0) +R|ci|0;BR(x0) +R2|d|0;BR(x0) ≤≤ ν

for some constant ν ∈ (0,∞) and f i ∈ C0,µ(BR(x0)) and g ∈ C0(BR(x0)). Then

|u|′1,µ;BR/2(x0) ≤ C(‖u‖L2(BR(x0)) +R1+µ[f ]µ;BR(x0) +R2|g|0;BR(x0))

for some constant C = C(n, λ, ν) ∈ (0,∞).

References: Gilbarg and Trudinger, Chapter 8.
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